What is the potential for more humane stunning methods for wild caught fish? :

A

Centre for Evidence-Based Agriculture

The problem

Team

specialist

Dr Nicola Randall (PI)

specialist

Fish health/welfare

Dr Tharangani Herath (Co-PI)

Dr Katy James

Evidence synthesis specialist

Fish Health/welfare specialist

Dr Nilantha Jayasuriya

Dr Jeff Lines

Fish welfare expert

Fish stunning technology expert

Fisheries expert

Salvador Prats Aparicio

• Each year > a trillion wild-finfish

worldwide.*

received little attention.

http://fishcount.org.uk/).

slaughtered for food and animal feed

• To date, attention focussed on how capture

the ethical implications for aquatic animal

welfare, specifically at point of slaughter, have

*calculated using FAO production tonnage statistics together with

estimated mean weights for fish species (calculated by Alison Mood,

production can sustainably meet this demand but

MRes student

Does it matter?

- Research indicates that fish are sentient capable of experiencing pain and suffering (Braithwaite 2010; Broom 2014 & 2016; Sneddon et al 2020). In the UK the Sentience Act enshrines this in law.
- Most commercially-caught wild fish that are landed alive, die by:
 suffocation in air or ice water/slurry, or
 during processing where fish are bled, gutted or decapitated alive (Robb & Kestin, 2002).
- Fish often remain conscious, able to experience pain and distress, for a considerable time.
- Seemed inhumane for farmed fish by the European Food Safety Authority (EFSA) & World Organisation for Animal Health

Objectives

1. Overview of the worldwide commercial wildcapture fishing industry

2. Map the evidence relating to humane stunning of wild caught fish

3. Feasibility analysis

Which fishing system/geographical area/species etc are most amenable to routine uptake of stunning

1. Overview of worldwide wild-capture fishing industry

Tonnage of each species captured & geographical distribution of capture: FAO FishstatJ v.2020 1.0 Capture production statistics

Capture production – number of individuals:

Species tonnage = Number of individuals Species weight

Literature, presentations, online resources:

- Fishing gears
- Killing methods
- Where humane stunning is being implemented
- Reasons for lack of uptake

Scope

- Wild finfish
 - marine, freshwater, brackish
- Commercial wild-capture
- Fish for human and non-human consumption
- Global
- Humane stunning/killing methods defined by the OIE and EFSA:
 - Electrical stunning
 - Percussive stunning
 - Spiking & coring
 - Free bullet

Global capture production

- Most are **Marine** capture
- Asia is the biggest producer

- Worldwide capture production (1998-2018) averaged **77,020,863** tonnes per year
- Equates to an estimated **0.9 to 2.5 trillion** individuals captured per year

Top 15 finfish captured globally

Species/mixed species ranked by number of individuals

Rank	Lower millions	Number	Upper millions	Number
		millions		millions
1	Peruvian anchovy	228,609	Peruvian anchovy	662,967
2	Japanese anchovy	64,402	Sardinellas nei	141,333
3	Sandeels nei	44,181	Stolephorus anchovies nei	96,085
4	European sprat	36,020	Anchovies nei	82,343
5	Black and Caspian	22,855	Japanese anchovy	70,842
	Sea sprat			
6	Capelin	15,246	European anchovy	66,943
7	Araucanian	14,788	Capelin	44,947
	herring			
8	European	14,305	Sandeels nei	44,181
	anchovy			
9	Stolephorus	13,249	Bombay-duck	43,017
	anchovies nei			
10	Silver cyprinid	11,053	Largehead haretail	40,288
11	European pilchard	8,860	Jack and horse mackerels	39,329
12	Pacific anchoveta	5,897	European sprat	36,020
13	Southern African	5,764	Black and Caspian Sea	31,703
	an ah ay u		annat	

- Small pelagic species heavily traded, widespread markets and complex network of producers and markets
- Mackerel, herring and sardine human consumption
- Smaller fish species typically fishmeal or fish oil

Majority of wild-fish killed inhumanely

- Yellow fin tuna 6m
- Atlantic salmon 1m
- Anchovy 2-40 cm

Peruvian anchovy and Japanese Anchovy combined numbers of 300-800,000 million individuals captured per annum.

2. Systematic map of research into humane stunning of wild caught fish

Systematic mapping rigorous, objective and transparent method to collate, catalogue and describe literature relevant to a broad topic.

Collaboration for Environmental Evidence

10	FIRST_AUTHO -	TITLE		YEAR - REFERENCE -	REF_T	YPE • TEXT_RE/ • LII	Nk - ENGLISH - INTERVE	NTIOI - COUNTRY
	1 Aškinis, S.	Nutritious matter leaching from	m the rotation fi	2001 Aškinis, S., M.	Journa	I Abstract	Abstract o Alteratio	on of slu Lithuania
	2 Aškinis, S.	Investigations on phosphorus	leaching in crop	2003 Aškinis, S. and	Journa	Abstract	Abstract o Alteratio	on of slu Not clear
	3 Beckwith, C. P.	Nitrate leaching loss following	application of or	1998 Beckwith, C. F	Journa	I Full text	Yes Manure	type, alt UK
	4 Bouwer, W.	Relationships between agricul	tural land use an	1991 Mitteilungen	Journa	Abstract	Abstract o Not clea	r Germany
	5 Cameron, K. C.	Nitrogen leaching losses from	different forms	2004 Cameron, K. C	Journa	I Full text	Yes Manure	type, alt New Zeala
TIME_OF_YEAR_N	AEASI - FARM_SYST	EN - SAMPLING_LOCATIOI -	SAM	PLING_METHOD	-	FERTILIZER	FLOW_PATH -	SOIL_TEXTURE
Not clear	Not clear	Lab	Water drainag	ge/Drain		Organic Fertilizer	Subsurface	Loam r
Not clear	Arable	Stream/River	Stream Sample	e		Organic Fertilizer	Groundwater	Silt loam
All Year Arable		Field, Stream/River	Piezometer, Stream Sample			Not clear	Groundwater	
All Year	Arable	Field, Stream/River	Piezometer, St	Piezometer, Stream Sample Not clear		Not clear	Groundwater	
All Year	Mixed	Field	Piezometer Not clear		Groundwater			
All Year	Mixed	Stream/River	Not clear			Not clear	Not clear	
Summer	Arable	Plot	Not clear			Inorganic Fertilizer	Surface	Silt loam r
Autumn, Winter	Arable	Not clear	Not clear			Not clear	Groundwater	Not clear
Not clear	Arable	Plot	Lysimeter			Organic Fertilizer	Subsurface	Sand Ioam, Ioaa
All Year	Dairy	Plot	Generic Collec	tion System, Piezomet	er	Not clear	Subsurface, Surface	Silt clay loam a
All Year	Not clear	Lysimeter	Lysimeter			Inorganic Fertilizer	Subsurface	Sand Ioam a
Not clear	Dairy	Lab	Slurry Sample			Organic Fertilizer		
All Year	Arable	Plot	Generic Collec	tion System		Not clear	Surface	Silt loess r
Autumn, Spring, \	Winter Arable	Field	Soil core + lea	ching estimate		Not clear	Not clear	Loam, Loam clahe
Not clear	Mixed	Stream/River	Not clear			Inorganic Fertilizer, O	ng Not clear	Not clear
Summer	Arable	Plot	Not clear			Not clear	Surface	Karst geology
All Year	Not clear	Plot	Generic Collec	tion System		Organic Fertilizer	Surface	Clay loam
Summer	Not clear	Plot	Generic Collec	tion System		Inorganic Fertilizer	Surface	Silt loam k
All Year	Arable	Plot	Monitoring we	ell		Not clear	Groundwater	Silt loam k
Summer	Arable	Plot	Generic Collec	tion System		Not clear	Surface	Silt loam
All Year	Not clear	Plot, Stream/River	Monitoring we	ell, Stream Sample		Not clear	Not clear	Loam
Not clear	Horticultur	e Plot	Generic Collec	tion System, Lysimeter	r	Not clear	Subsurface, Surface	Silt loam
Spring, Winter	Arable	Field	Not clear			Inorganic Fertilizer	Not clear	Clay loam
All Year	Arable	Plot	Water drainag	ge/Drain		Not clear	Subsurface	Sand, Clay
All Year	Arable	Plot	Water drainag	ge/Drain		Organic Fertilizer	Not clear	Sand loam
Summer, Winter	Not clear	Lysimeter	Water drainag	ge/Drain		Not clear	Subsurface	Sand
Not clear	Not clear	Plot	Piezometer, So	oil core-different depth	IS	Not clear	Groundwater	Sand

Systematic map cont.

Aim: To systematically map primary research literature relevant to humane stunning of wild-caught fish

- Stunning methods & parameters tested for each species
- Fish welfare outcomes reported
- Impact of stunning on flesh quality
- Evidence for on-board stunning
- Cost-benefit analysis

Key humane stunning parameters only scientifically tested for a small minority of commercially caught wild species & stunning methods

A few Species-specific protocols to accurately assess state of consciousness when evaluating stunning methods

Humane stunning relevant to wild-caught finfish mainly carried out on farmed fish under controlled laboratory conditions Trends and Knowledge gaps for future research Knowledge and technology transfer from aquaculture to aid development of humane stunning in wild-capture fisheries

Scientific verification of methods on-board commercial fishing vessels required to ensure welfare & product quality standards are met

Further research to show other benefits for fishermen e.g. labour savings, improved health and safety

Humane stunning examples & barriers Percussive stunning

Scottish Wild Salmon Company Usan - Montrose

Scottish Wild Salmon Company - Scottish bag net caught Atlantic salmon

Wild Salmon Direct (Alaska)

- Automated percussive
- Sockeye & Coho

Manual Percussive stunning

- Labour-intensive
- Most suited to small fisheries catching limited numbers
- Care needed not to damage appearance (eg eye injuries such as haemorrhaging) which could impact price (eg Lyu et al 2015).
- Anecdotal evidence suggests there could be long term physical effects for fishermen

Automated percussive stunning

- Machine needs re-calibrating for fish of different sizes
- So less practical in wild-capture fisheries where fish size varies.
- Fish need orientating head first into the stunner, in single file
- By-catch needs separating

Humane stunning examples & issues Electrical stunning

Blue North (Alaska)

- Semi-dry electrical stunners
- Pacific cod
- Marketed as humanely killed

Ekofish (Netherlands)

- Dry electrical stunners
- Plaice, lemon sole, turbot and brill
- Marketed as humanely killed

Dry stunning

- Fish need orientating
- Only suits head first into the stunner, single file & fish of similar size
- By-catch needs separating and debris that could damage the stunner or cause mis-stunning (metal debris) removing
- Capital investment and cost to retrofit existing vessels

Not suited to all types of fishery, especially those capturing large volumes of fish, of different sizes, in short space of time

Investigating the feasibility of using electrical stunning on-board fishing vessels

So a solution is not straightforward

- No humane stunning or stun/killing method suitable for all finfish species
 - over 30,000 species of fish which vary widely in anatomy, physiology & ecology
 - Highest numbers of fish are species of lowest value
- The choice of method should take account of:
 - species-specific information where available
 - stunning parameters (electrical and automated percussive stunning) that have been determined scientifically (OIE, 2022).

3. Feasibility analysis

Aim

Which fishing system/geographical area/species etc are most amenable to routine uptake of stunning.

Aimed to ID:

- where the need for stunning greatest (i.e. animal numbers and suffering greatest)
- Identify where uptake most likely e.g. availability of technology, known stunning parameters etc
- Consider impact of use of a stunning method on sustainability

	Supply chain	Barrier
	Fisheries	Attitudes towards fish sentience and welfare
		Fish already dead or near death when landed due to capture technique
		Not all stunning methods compatible with all fishing gear or suitable for all species:
		Capital and running costs of humane stunning technology
Dorrioro		Lack of evidence for a good return on investment
Barriers		Other economic, socioeconomic, regulatory and legislative issues take higher priority
to more	Processing &	Lack of demand for humanely stunned wild-caught fish
	Retail	Supply chains often fragmented, and not all buyers want/demand humanely stunned fish
numane		No evidence that consumers will pay a premium for humanely stunned wild-caught fish
		Once humane stunning becomes standard practice/legislated, premium may dissipate
iethous		Assurance schemes difficult to audit on board vessels
		Difficult to sell 'humane stunning' to consumers
		Retailers want consistent messaging to consumers for all fish species.
		Some retailers recognise ethics but are hindered by a lack of understanding in the market
	Legislation	General lack of global legislation, guidelines and recommendations
	Research & development	Lack of multi-disciplinary approach in commercial wild-capture fisheries
		Logistics and cost of on-board scientific testing of equipment – lack of funding

t

h

m

Present

Dry electrical stunning feasible for some species & fisheries. Challenges: separation of by-catch & removal of debris causing stunner damage or mis-stuns; not scientifically tested in commercial setting regards welfare

Manual percussive stunning & spiking feasible for some species. Challenges: Labour intensive; Suited to high value species returns on labour; Worker competency & fatigue impact efficacy

Automated percussive stunning less feasible in wild-capture fisheries because fish are not uniform size No one-size fits all stunning method suitable for all species and types of fishery

Present vs future

Future

Continuous flow in-water electric stunning to stun large volumes of wild-caught fish, of different sizes, in a short space of time. Method suited to pelagic fisheries using e.g. seine nets. Suitable for small pelagic species

where animal numbers and suffering is greatest?

Challenges: Attitudes to fish welfare – fishermen & consumers; Identifying win-win benefits for fish & fishermen; Promoting humane stunning to consumers; Funding for research and feasibility studies; Collaboration between fisheries, research/tech companies and vessel builders

How can we promote better welfare to the industry?

- Pre-slaughter stress can negatively impact flesh quality e.g. changes in muscular pH in fish (Robb & Kestin 2002).
- Flesh quality important where consumers willing to pay a premium. E.g. spiking & coring tuna for sashimi markets (eg Starling and Diver 2005).
- Sometimes product quality isn't a driver. This is a major barrier! (56% of finfish captured 2010 estimate to fishmeal/fish oil (Mood & Brooke 2024)
- Possibility to promote other benefits :
 - cost savings in terms of labour or time, &
 - improvements in health and safety of the crew.

Anecdotal evidence, suggests that dry electrical stunning facilitates safer and easier catch handling and bleeding of large fish, so improving worker safety.

Road map o change		Raise awareness
	Raise	 Public awareness of fish sentience & welfare needed to increase demand The fishing, processing and retail sector to improve understanding in the market
		 Policymaker and research funders to gain support for fish welfare and humane stunning
		Incentivise engagement
	Incentivise	 Gather & disseminate evidence of benefits (eg improved quality, cost savings), to drive supply chain uptake & demand
		Labelling or assurance schemes
		Facilitate uptake
	Facilitate	 Research & innovation to a) provide fishermen with technology & species-specific stunning parameters. b) ensure fish are landed alive before being slaughtered
		• Deliver advice and training to fishermen about technology/methods suitable for needs
		Support uptako
	Support	 technology at a price that is feasible to a range of business sizes. E.g.rent rather than buy technology
		Enable long term, beneficial change.
	Enable	 Facilitate shared learning and peer-to-peer support
		• Support from processor and retailers for humanely stunned or stun/killed fish
	+	
		Drive change
	Drive	 Action beyond voluntary uptake and integrating humane stunning or stun/killing into policy and legislation.

Thank you for listening

Thanks to the Humane Slaughter Association for funding this project.

The views expressed are those of the authors, and not necessarily those of the funder

nrandall@harper-adams.ac.uk